Hypercalcemia (11)

Meghan Sebasky

- **Incidence**
 - Found in ~15% of hospitalized adult patients (often incidentally)

- **Pathophysiology**
 - 1% of total body Ca circulates in the body and is exchangeable with extracellular fluid; the rest resides in bone
 - ~50% of extracellular calcium is ionized \(\rightarrow \) physiologically active
 - ~40% bound to protein (mostly albumin) \(\rightarrow \) affected by protein levels
 - Correction of total serum Ca for hypoalbuminemia: Add 0.8 mg/dL to measured serum Ca for every 1 g/dL decrease in albumin (with normal albumin value of 4 mg/dL)
 - Remainder complexed with anions to form calcium salts

- **Etiology**
 - Entry of Ca into the circulation exceeds excretion in urine/deposition into bone
 - Accelerated bone resorption, increased gastrointestinal absorption, decreased renal excretion (or combination of these factors)
 - #1 cause \(\rightarrow \) primary hyperparathyroidism (usually due to parathyroid adenoma)
 - Activated osteoclasts resorb bone + increased intestinal absorption of Ca
 - #2 cause \(\rightarrow \) malignancy (this is the most common cause in hospitalized patients)
 - Bone metastases cause local osteolysis; multiple myeloma causes release of osteoclast activating factors; solid tumors secrete PTHrp; lymphoma causes PTH-independent extrarenal production of calcitriol
 - Less common causes
 - Increased bone resorption \(\rightarrow \) thyrotoxicosis, immobilization (several weeks), Paget disease, vitamin A intoxication
 - Increased calcium absorption in intestine \(\rightarrow \) increased calcium ingestion, milk-alkali syndrome, increased endogenous production of 1,25(OH)\(_2\)D (granulomatous disease, vitamin D excess)
 - Misc: Lithium, thiazide diuretics, tamoxifen, adrenal insufficiency, theophylline toxicity, familial hypocalciuric hypercalcemia (FHH)

- **Presentation**
 - Symptoms depend on degree and acuity of increase in Ca level
 - Mild hypercalcemia (up to 11-11.5 mg/dL)
 - Symptoms, if present at all, are nonspecific (fatigue, constipation, depression)
 - Moderate/severe hypercalcemia (>12-14 mg/dL)
 - Chronic elevation may be well tolerated
 - Patient may still develop nephrolithiasis (from chronic hypercalciuria) and type 1 renal tubular acidosis
 - Acute rise can cause marked symptoms
 - Polyuria (decreased concentrating ability of distal tubule), polydipsia, dehydration, acute renal insufficiency, anorexia, nausea, muscle weakness, bone pain, altered mental status
 - EKG may show shortened QT interval, AV block, bradycardia
- Neuropsychiatric disorders most common in patients with primary hyperparathyroidism (anxiety, depression, cognitive dysfunction)

No characteristic physical exam findings

- **Diagnosis**
 - **First, confirm elevated calcium level**
 - Recheck value. Correct for albumin vs. check ionized Ca.
 - **Second, check PTH**
 - Elevated or high normal PTH indicates PTH-mediated cause → primary hyperparathyroidism (and very rarely FHH)
 - PTH at the upper end of normal range is inappropriate as the PTH should be *suppressed* in patients with high serum Ca
 - Low serum PTH indicates non-PTH mediated cause → continue workup
 - **If PTH is low, then check**
 - Parathyroid hormone-related peptide (PTHrp)
 - Vitamin D (1,25-dihydroxyvitamin D and 25-hydroxyvitamin D)
 - Elevated 25(OH)D suggests vitamin D intoxication
 - Elevated 1,25(OH)_{2}D suggests granulomatous disease/lymphoma
 - **If PTHrp and Vitamin D levels are normal, then check**
 - Serum and urine protein electrophoresis, TSH, Vitamin A
 - Other clues
 - Mild elevation in PTH can also be due to familial hypocalciuric hypercalcemia (low urine Ca level confirms)
 - Thiazide diuretics enhance Ca resorption in distal tubule → low urine Ca
 - Low or low-normal serum phosphorous → hyperparathyroidism and humoral hypercalcemia of malignancy
 - PTH inhibits proximal tubule phosphate reabsorption
 - Calcium > 13 mg/dL usually due to malignancy; <11 mg/dL or high normal typical of hyperparathyroidism

- **Treatment**
 - Indicated if Ca > 14 or Ca > 12 in symptomatic patient (if asymptomatic then only hydration necessary for Ca of 12)
 - Hydration, usually aggressive, is mainstay of treatment
 - Normal saline at 200-300 cc/hour if severe/symptomatic
 - Consider furosemide 20-100 mg IV after volume replete
 - Mainly to avoid volume overload (does not reduce Ca quickly)
 - Bisphosphonates indicated in malignancy-associated hypercalcemia
 - Pamidronate or zoledronic acid (peak effect takes 48-72 hours)
 - Calcitatonin useful if rapid lowering not accomplished with hydration
 - Rapid onset but short duration, patients can develop tolerance (tachyphylaxis within 48-72 hours).
 - Glucocorticoids are first line after hydration in hematologic malignancies or vitamin D intoxication (suppress 1,25(OH)_{2}D)
 - Hemodialysis can be used for resistant, life-threatening hypercalcemia
 - And, of course, treat the underlying condition
Consider parathyroidectomy in patients with primary hyperparathyroidism who meet criteria set forth by National Institutes of Health (age <50, T score < -2.5, Creat clearance < 60, calcium > 1mg/dl above normal).

- **References for Further Reading**